MUC1 glycopeptide epitopes predicted by computational glycomics
نویسندگان
چکیده
Bioinformatic tools and databases for glycobiology and glycomics research are playing increasingly important roles in functional studies. However, to verify hypotheses generated by computational glycomics with empirical functional assays is only an emerging field. In this study, we predicted glycan epitopes expressed by a cancer-derived mucin, MUC1, by computational glycomics. MUC1 is expressed by tumor cells with a deficiency in glycosylation. Although numerous diagnostic reagents and cancer vaccines have been designed based on abnormally glycosylated MUC1 sequences, the glycan and peptide sequences responsible for immune responses in vivo are poorly understood. The immunogenicity of synthetic MUC1 glycopeptides bearing Tn or sialyl-Tn antigens have been studied in mouse models, while authentic glyco-epitopes expressed by tumor cells remain unclear. To examine the immunogenicity of authentic cancer derived MUC1 glyco-epitopes, we expressed membrane bound forms of MUC1 tandem repeats in Jurkat, a mutant cancer cell line deficient of mucin-type core-1 β1-3 galactosyltransferase activity, and immunized mice with cancer cells expressing authentic MUC1 glyco-epitopes. Antibody responses to individual glyco-epitopes were determined by chemically synthesized candidate MUC1 glycopeptides predicted through computational glycomics. Monoclonal antibodies can be generated toward chemically synthesized glycopeptide sequences. With RPAPGS(Tn)TAPPAHG as an example, a monoclonal antibody 16A, showed 25-fold higher binding to glycosylated peptide (EC50=9.278±1.059 ng/ml) compared to its non-glycosylated form (EC(50)=247.3±16.29 ng/ml) as measured by ELISA experiments with plate-bound peptides. A library of monoclonal antibodies toward authentic MUC1 glycopeptide epitopes may be a valuable tool for studying glycan and peptide sequences in cancer, as well as reagents for diagnosis and therapy.
منابع مشابه
Immunological Evaluation of Recent MUC1 Glycopeptide Cancer Vaccines
Aberrantly glycosylated mucin 1 (MUC1) is a recognized tumor-specific antigen on epithelial cell tumors. A wide variety of MUC1 glycopeptide anti-cancer vaccines have been formulated by many research groups. Some researchers have used MUC1 alone as an immunogen whereas other groups used different antigenic carrier proteins such as bovine serum albumin or keyhole limpet hemocyanin for conjugatio...
متن کاملTumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice.
Human adenocarcinomas overexpress a hypoglycosylated, tumor-associated form of the mucin-like glycoprotein MUC1 containing abnormal mono- and disaccharide antigens, such as Tn, sialyl-Tn, and TF, as well as stretches of unglycosylated protein backbone in the variable number of tandem repeats (VNTR) region. Both peptide and glycopeptide epitopes generated from the VNTR are candidates for cancer ...
متن کاملIdentification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat.
The cell membrane mucin MUC1 is over-expressed and aberrantly glycosylated in many cancers, and cancer-associated MUC1 glycoforms represent potential targets for immunodiagnostic and therapeutic measures. We have recently shown that MUC1 with GalNAcalpha1-O-Ser/Thr (Tn) and NeuAcalpha2-6GalNAcalpha1-O-Ser/Thr (STn) O-glycosylation is a cancer-specific glycoform, and that Tn/STn-MUC1 glycopeptid...
متن کاملCancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes.
Autoantibodies to cancer antigens hold promise as biomarkers for early detection of cancer. Proteins that are aberrantly processed in cancer cells are likely to present autoantibody targets. The extracellular mucin MUC1 is overexpressed and aberrantly glycosylated in many cancers; thus, we evaluated whether autoantibodies generated to aberrant O-glycoforms of MUC1 might serve as sensitive diagn...
متن کاملSynthesis and biological evaluation of a novel MUC1 glycopeptide conjugate vaccine candidate comprising a 4’-deoxy-4’-fluoro-Thomsen–Friedenreich epitope
The development of selective anticancer vaccines that provide enhanced protection against tumor recurrence and metastasis has been the subject of intense research in the scientific community. The tumor-associated glycoprotein MUC1 represents a well-established target for cancer immunotherapy and has been used for the construction of various synthetic vaccine candidates. However, many of these v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2012